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ABSTRACT 

In dual-processor systems the optimal assignment of the modules of 

a distributed program over the two processors may be found using a net- 

work flow algorithm. 

on the two processors and is not usually feasible to recompute each time 
the loads change. 

The optimal assignment is sensitive to the loads 

We address the problem of computing all optimal assignments for all 

possible load values in advance of actual execution of the distributed 

program. 
represented by a convex polyhedron in 3-space, each of whose faces corre- 

sponds to a specific optimal assignment. It is proved that, even though 
there are 2" distinct assignments of n modules over the two processors 

and an infinite number of load values, the number of optimal assignments 

is O(n2). 

optimal assignment at a specific pair of loads in O(n log n) time is 

described. An algorithm that finds the polyhedron in O(n ) time is presented. 

A mathematical model is developed wherein the situation is 

A fast look-up technique that, given the polyhedron, finds the 

7 

The results presented here provide a means for adapting rapidly to 
changes in the load on both machines. 
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- I. In t roduc t ion  

. 

The p o t e n t i a l  f o r  d i s t r i b u t e d  processing e x i s t s  whereve: : w-  

two o r  more computer systems t h a t  are in te rconnec ted  i n  such L. ~as!-.a 

t h a t  a program (o r  subprogram) running on one machine can invmz L 

d i f f e r e n t  program on another  machine. Such s i t u a t i o n s  exist j: 

numerous i n d u s t r i a l  and academic computing environments. 

Given t h e  p o s s i b i l i t y  of execut ing t h e  var ious  modules rhh= 

up a l a r g e  program on d i f f e r e n t  processors ,  we are n a t u r a l l y  :*%%xed 

i n  doing t h i s  i n  an opt imal  fashion.  

execute  on t h e  processor  t h a t  is b e s t  s u i t e d  t o  t h e  s o r t  of :imru:~c:Jn 

t h a t  is being c a r r i e d  ou t  by t h a t  module. Modules t h a t  commor.::s:~ 

heavi ly  wi th  each o the r  should r e s i d e ,  as f a r  as poss ib l e ,  or. :M s.me 

machine. I f  w e  a s s o c i a t e  wi th  each modale i t s  execut ion cos t s  .u aach 

of t h e  a v a i l a b l e  processors ,  and i f  t he  c o s t s  of communicatlx ?U:**a 

pairs of modules (should they not be cores ident )  are a l s o  si=-. :%a 

t h e  problem becomes one of ass igning  modules t o  processors  .mi:? :?at 

Each module should ider.L> 

t h e  sum of execut ion and communication c o s t s  is minimized. 

Stone [77al has  shown t h a t  t h i s  problem may be solved for the 

two-processor case  using a network flow algorithm. 

t h r e e  processor  case  is descr ibed by Stone [77bI. Rao e t  a l .  ('01 

desc r ibe  how a memory c o n s t r a i n t  on one of t h e  processors  eay he taken 

i n t o  account.  Bokhari [791 has  extended t h e  network flow model t o  

inc lude  t h e  p o s s i b i l i t y  of reass igning  modules during t h e  course of 

program execut ion,  while  tak ing  t h e  c o s t s  of reassignment Into account. 

An extension c\' t h e  
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Further  research by Stone [78] shows how t h e  assignments may be found 

e f f i c i e n t l y  under condi t ions of varying load on only one processor.  

This research addresses  t h e  problem of f ind ing  t h e  optimal 

assignments f o r  dual-processor systems under varying load cond i t ions  on 

both processors.  

t h e  processors  t h a t  make up a d i s t r i b u t e d  system are usua l ly  

time-shared. I n  such circumstances, t h e  c o s t  of running a module on a 

s p e c i f i c  processor  depends on t h e  load on t h a t  processor.  The optimal 

assignment of modules t o  processors  is , theref  ore ,  s e n s i t i v e  t o  t h e  

load cond i t ions  on t h e  processors.  The network flow algori thm may, of 

course,  be used t o  f i n d  t h e  optimal assignment a t  a s p e c i f i c  p a i r  of 

load levels. However, i t  is usua l ly  not  f e a s i b l e  t o  do t h i s  i n  real 

t i m e  because, even though t h e  algori thm i s  e f f i c i e n t ,  t h e  t i m e  required 

t o  so lve  t h e  assignment problem can equal  o r  exceed t h e  t i m e  required 

t o  run t h e  program whose execution c o s t  is being minimized. 

I n  t h e  t y p i c a l  i n d u s t r i a l  o r  academic environment, 

W e  p r e sen t  i n  t h i s  paper an algori thm t h a t  enables u s  t o  compute 

e f f i c i e n t l y  a l l  optimal assignments f o r  a l l  p o s s i b l e  values  of load i n  

advance of a c t u a l  execution of t h e  d i s t r i b u t e d  modular program. 

f a s t  look-up technique t h a t  f i n d s  t h e  optimal assignment of a l l  n 

modules a t  s p e c i f i e d  load condi t ions i n  O(n log  n )  t i m e  is a l s o  

developed. 

r ap id ly  t o  changes i n  t h e  load on t h e  two machines. 

A very 

The r e s u l t s  presented he re  provide a means f o r  adapt ing 

This paper is  organized as follows. I n  Sect ion I1 w e  show t h a t ,  

assuming t h e  run c o s t s  of modules t o  vary l i n e a r l y  with t h e  load on t h e  
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processors ,  t h e  c o s t  of opt imal  assignments a t  a l l  va lues  of load 

correspond t o  a convex polyhedron i n  3-space. In Sect ion  I11 we show 

how a l l  t h e  r e l evan t  information 

its p r o j e c t i o n  on t h e  XY plane. 

2 polyhedron i s  proved t o  be O(n ) 

about t h e  polyhedron is contained i n  

The t o t a l  number of f a c e s  on t h e  

i n  Sec t ion  IV. In Sect ion  V w e  

develop t h e  concept of c r i t i c a l  load l ines-- these p e r m i t  u s  t o  look up 

t h e  opt imal  assignment at any va lue  of load i n  O(n log  n )  t i m e .  

a lgor i thm f o r  f ind ing  t h e  polyhedron is presented  i n  Sec t ion  VI. 

conclude wi th  a d iscuss ion  on implementat i on  cons idera t ions  and 

desc r ibe  some new problems generated by t h i s  research.  

An 

W e  
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- 11. The Assignment Polyhedron. 

I n  t h i s  s e c t i o n  we present  our assumptions and develop a 

mathematical model f o r  our assignment problem. 

t h e  network flow algori thm f o r  t h e  s o l u t i o n  of t h e  assignment problem 

f o r  given load condi t ions and t h e  extension t o  t h e  case where t h e  load 

on only one processor  is va r i ab le .  We go on t o  show t h a t ,  under 

assumptions of l i n e a r i t y ,  t h e  c o s t  of each assignment under varying 

load condi t ions on both processors  corresponds t o  a p l ane  i n  3-space 

and t h a t  t h e  optimal assignments form a convex polyhedron, such t h a t  

each f a c e  of t h e  polyhedron corresponds t o  a s p e c i f i c  optimal 

assignment 

We f i r s t  b r i e f l y  review 

The following i s  a b r i e f  expos i t i on  of Stone's network flow model 

A d i s t r i b u t e d  program i s  considered t o  be a c o l l e c t i o n  of [Stone,75]. 

modules (which may be subrout ines ,  corout ines ,  o r  d a t a  f i l e s ) .  A 

module may, i n  general ,  execute o r  r e s i d e  on e i t h e r  of t h e  two 

processors.  

e i t h e r  processor. 

i n t e rp rocesso r  communication between them, should they not be 

coresident.  Costs may be measured i n  t i m e ,  d o l l a r s  o r  o t h e r  resource 

u n i t s .  

For each module w e  are given t h e  c o s t  of executing i t  on 

For each p a i r  of modules w e  are given t h e  c o s t  of 

The problem of f i n d i n g  t h e  assignment t h a t  minimizes t h e  n e t  c o s t  

is  solved by drawing up an assignment graph i n  which each cu t  

corresponds t o  an assignment and t h e  weight of t h e  c u t  equals  t h e  c o s t  

of t h e  assignment. By applying a maxflow algorithm t o  t h i s  graph, w e  



-5- 

. 
L 

may ob ta in  t h e  minimum weight c u t  and hence t h e  minimum c o s t  

assignment. This a lgor i thm gives  u s  the  opt imal  assignment f o r  f ixed  

values  of loads on t h e  two machines. Should t h e  loads change, t h e  

algori thm may be run aga in  wi th  s u i t a b l y  modified va lues  of t h e  

runcosts .  This is v i a b l e  i f  t he  loads change a f t e r  per iods  of t i m e  

t h a t  are much longer  than t h e  t i m e  requi red  t o  run t h e  algorithm. 

Since t h i s  is o f t e n  not  t h e  case, w e  would l i k e  t o  have procedures t h a t  

enable  us  t o  compute a l l  opt imal  assigments p r i o r  t o  t h e  execut ion of 

t h e  d i s t r i b u t e d  program and t o  have means f o r  r ap id ly  looking up t h e  

optimal assignment a t  a given load l eve l .  

This problem has  been solved by Stone [781 f o r  t h e  case  where t h e  

It has been shown t h a t  f o r  i nc reas ing  load on only one machine va r i e s .  

va lues  of load on one machine, success ive  opt imal  assignments are 

nested and hence t h e  t o t a l  number of assignments f o r  a problem 

involving n modules is  no more than n+l. 

so lve  t h e  problem f o r  v a r i a b l e  loads on both machines and may be 

considered t o  be a two-dimensional ex tens ion  of t h e  previous research.  

The r e s u l t s  presented  below 

L e t  us l a b e l  our  two processors  X and Y. We assume t h a t  t h e  load 

l e v e l s  on t h e  two machines may be  descr ibed by t h e  real p o s i t i v e  

numbers x and y respec t ive ly .  

c a l l e d  a load po in t  and may l i e  anywhere i n  t h e  p o s i t i v e  XY plane. 

A s p e c i f i c  p a i r  of load levels <x,y> is  

The c o s t  of running a module A on processor  X is assumed t o  vary 

l i n e a r l y  wi th  t h e  load on X. 

denoted ax. 

The constant  of p ropor t iona l i t y  is 

Thus the  c o s t  of running module A on processor  X is 
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a x and, s i m i l a r l y ,  t h e  c o s t  f o r  running A on Y is a y. 
X Y 

Note. For c l a r i t y  of p re sen ta t ion ,  w e  have assumed t h a t  x and y 

vary from 0 t o  i n f i n i t y ,  thereby implying t h a t  a t  load ze ro  each module 

executes i n  ze ro  t i m e .  This should create no d i f f i c u l t i e s  i n  t h e  

implementation of t h i s  work because loads w i l l  i n  p r a c t i c e  be 

constrained t o  l i e  between some xmin and xmX and some ylnin 

and y,,. 

processor  x would be  a x 

Thus t h e  s h o r t e s t  t i m e  i n  which a module can execute on 

>O. x min 

The c o s t  of communication between a p a i r  of nodes, should they not  

be co res iden t ,  I s  assumed to be constant over a l l  poss ib l e  values of 

load. This assumption is  j u s t i f i e d  by p r a c t i c a l  experience wi th  t h e  

Brown Universi ty  Graphics system [Michel & van Dam 771 where t h e  

network flow algori thm w a s  f i r s t  implemented. 

Consider t h e  c o s t  f i g u r e s  shown i n  Table I. Here w e  have a 

problem involving 5 modules. 

processor  are given as v a r i a b l e s  i n  x and y o  The communication c o s t s  

are f o r  t h e  ind ica t ed  p a i r  of modules, should they not be coresident .  

These c o s t s  may be i n s e r t e d  i n t o  t h e  assignment graph of Fig. 1, as 

described by Stone [77a]. Each c u t  i n  t h i s  graph corresponds t o  a n  

assignment and vice-versa. The weight of each c u t  equals  t h e  c o s t  of 

t h e  corresponding assignment. For example, t h e  t h i c k  l i n e  i n  Fig. 1 

shows a c u t  t h a t  a s s igns  modules 1 & 2 t o  processor  X and t h e  remaining 

modules t o  processor  Y. The weight of t h i s  c u t  is Z=12x+16y+16, t h i s  

being t h e  sum of t h e  weights on t h e  c o n s t i t u e n t  edges. I n  general ,  a 

The run c o s t s  of each module on each 



- 7- 

Runcost On Runcost On 

Module X Y 

3 
4 
5 

lox  
2x 

X 
03 

4x 

1 1Y 
3 7Y 

5Y 
7Y 
4Y 

I x=load on X y=load on Y I 

Comnunication Costs 

I Module 1 2 3 4 5  I 
- 3 7 8 0  

- 0 1 0  
- 0 7  

- 9  

TABLE I. Runcosts and Comnunication Costs for 
a 5 module problem. 

. 
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F i g .  1 Assignment Graph for the Problem shown i n  Table I 
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c u t  w i l l  have weight z=Mx+Ny+C, where M(N) equals  t he  sum of run c o s t s  

of modules ass igned t o  X(Y). C equals  t h e  sum of communication c o s t s  

between modules t h a t  are not  cores ident  . 

Since t h e r e  is a one-to-one correspondence between c u t s  and 

assignments, w e  may i d e n t i f y  a c u t  by l i s t i n g  t h e  set of nodes i t  

as s igns  t o  processor  X ( t h e  remaining nodes must necessa r i ly  be 

assigned t o  processor  Y). Thus t h e  c u t  i nd ica t ed  i n  Fig. 1 is  denoted 

{1,2}. 

We w i l l  c a l l  t h e  equat ion of t h e  weight of a c u t  ( o r  assignment) 

j u s t  t h e  equat ion of a cu t  (or  assignment) f o r  brev i ty .  Thus t h e  

equat ion of cu t  {1,2) is  z=12x+16y+16 and t h e  equat ion of c u t  {1,2,3,5) 

(not marked i n  t h e  f i g u r e )  is z=17x+7y+18. The c a r d i n a l i t y  of a c u t  o r  

assignment is t h e  c a r d i n a l i t y  of the  set of nodes i t  a s s i g n s  t o  

processor  X. 

The assignment t h a t  p u t s  no modules on X is  c a l l e d  t h e  Null  

assignment, denoted (8, and has  an  equat ion of t h e  form z=Ny. The 

assignment t h a t  p u t s  a l l  modules on X is  c a l l e d  t h e  Universal  

assignment, denoted U, and has  an  equat ion of t h e  form z=Mx. 

The genera l  equat ion of a c u t  z=Mx+Ny+C rep resen t s  a p lane  i n  

3-space. 

involving n modules and two processors ,  w e  w i l l  have 2n such 

equat ions of planes. 

(because execut ion and communication c o s t s  are a l l  non-negative) and, 

Since t h e r e  are 2n poss ib l e  assignments for a problem 

The cons tan ts  M,N and C a r e  a l l  non-negative 
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as a r e s u l t ,  none of t h e s e  planes can i n t e r s e c t  with t h e  XY plane 

wi th in  t h e  p o s i t i v e  quadrant. 

with t h e  Z-axis ( s ince  QO). 

d i r e c t i o n s  are a l s o  nonnegative ( s ince  M , N L O ) .  

Every plane has  a non-negative i n t e r c e p t  

The s lopes  of t h e s e  planes i n  t h e  X and Y 

We w i l l  henceforth c a l l  t h e  p o s i t i v e  quadrant of t h e  XY plane t h e  

- load p l a n e  because each po in t  on i t  rep resen t s  a load point .  

given load po in t  <x,y>, t h e  lowermost of t h e  2n planes ( t h e  p l ane  

with t h e  smallest z-coordinate) is  t h e  one t h a t  r ep resen t s  t h e  optimal 

assignment. 

and y i n t o  t h e  assignment graph and applying a network flow algori thm 

t o  it. As w e  are i n t e r e s t e d  only i n  optimal acsignments, w e  need 

consider  only t h e  lowermost p l ane  a t  each <x,y>. A l i t t l e  r e f l e c t i o n  

w i l l  reveal t h a t  t h e s e  lowermost planes i n t e r s e c t  t o  form a convex 

polyhedron whose f a c e s  correspond t o  s p e c i f i c  assignments. W e  c a l l  

t h i s  t h e  assignment polyhedron because each f a c e  on t h i s  polyhedron 

r ep resen t s  an assignment t h a t  is optimal f o r  a l l  load po in t s  <x,y> t h a t  

l i e  w i t h i n  its p r o j e c t i o n  on t h e  XY plane. 

assignment polyhedron. 

A t  a 

This may be found by s u b s t i t u t i n g  t h e  s p e c i f i c  values  of x 

Fig. 2 shows a t y p i c a l  

It  i s  c l e a r l y  not  f e a s i b l e  t o  apply a network flow algori thm a t  

each po in t  on t h e  load plane i n  o rde r  t o  f i n d  t h e  polyhedron. 

Subsequent s e c t i o n s  of t h i s  paper d i scuss  how t h e  polyhedron may be 

found e f f i c i e n t l y  and a l s o  how i t  may be used t o  so lve  our assignment 

p r ob lem.  
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- 111. The Load Plane. 

. 
The assignment polyhedron descr ibed i n  t h e  previous s e c t i o n  is  

convex. 

f u r t h e r  t h a t  t h e  p r o j e c t i o n  of t h e  polyhedron onto t h e  XY plane  ( t h e  

load p lane)  i s  made up of convex polygons. 

It fo l lows  t h a t  each ind iv idua l  f a c e  is a convex polygon and 

The load p lane  is  thus d i s sec t ed  i n t o  convex polygonal regions 

each of which, having been pro jec ted  by a f ace ,  corresponds t o  an  

assignment t h a t  is optimal f o r  a l l  load p o i n t s  t h a t  f a l l  w i th in  i t ,  and 

i s  l a b e l l e d  accordingly.  

t he  polyhedron of Fig. 2, which is derived from a graph having e i g h t  

module nodes. 

Fig. 3 shows t h e  load p lane  corresponding t o  

Note. The regions a t  t h e  extreme r i g h t  and top  of t h e  load p l ane  

a r e  unbounded (see property 3.7 below). 

The "nesting" theorem by Stone [78] states t h a t  i n  a d i s t r i b u t e d  

processing s i t u a t i o n  of t he  s o r t  being considered here ,  i f  t h e  load on 

only machine Y increases  the  opt imal  assignment w i l l  change such t h a t  

modules move away from machine Y onto machine X and only i n  t h a t  

d i r ec t ion .  In o t h e r  words, success ive  opt imal  assignments are nested.  

This is c l e a r  from Fig. 3. The v e r t i c a l  dashed l i n e ,  parallel  t o  t h e  Y 

a x i s ,  r ep resen t s  an i nc rease  i n  t h e  load on processor  Y, while  t h e  load 

on processor  X is  maintained a t  a constant  value. 

p o s i t i v e  Y d i r e c t i o n ,  we encounter regions $4, { 8 ) ,  {7,8), {4,7,8), 

{3,4,7,8), {3,4,6,7,8). The corresponding property holds  i f  w e  keep 

Travel ing i n  t h e  
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Fig. 2 3-Dimensional view of an Assignment Polyhedron for a 
problem involving 8 modules. 
faces have not been 1 abel led. 

For clarity, some o f  the 

- X  
Fig. 3 The Load Plane Corresponding to the Polyhedron in Fig. 2 
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t h e  load on Y constant  and vary t h e  load on X. 

The load p lane  has  the  fol lowing p rope r t i e s .  

- 3.1 A h o r i z o n t a l  o r  v e r t i c a l  l i n e  through the  load plane cannot cu t  

through more than  n+l reg ions  (n is t h e  number of modules). 

This fo l lows  from t h e  nes t ing  theorem. 

- 3.2 Each poin t  <x,y> on t h e  load p lane  f a l l s  w i th in  a region t h a t  

r ep resen t s  an assignment t h a t  is equal  t o  o r  contained in t h e  

assignment a t  <x-Ax,y+Ay> (Ax,Ay>O) (Fig. 4). This  a l s o  

fo l lows  from t h e  nes t ing  theorem. 

- 3.3 The l i n e s  de f in ing  t h e  regions of t h e  load p lane  a l l  have 

p o s i t i v e  s lope.  This fol lows from property 3.2. A l i n e  wi th  

nega t ive  s lope  cannot separate two regions. For example, in 

Fig.5, suppose <x1,y1>,<x3,y3> a r e  contained in 

one region and <x2,y2> i n  another ,  and a l i n e  of 

nega t ive  s l o p e  separates t h e  two regions. Then t h e  assignment 

a t  <xl,yl> must be contained i n  t h e  assignment a t  

<x2,y2>, which in t u r n  must be contained in 

<x3,y3>- 

belong t o  t h e  same region. 

This is poss ib l e  only i f  a l l  t h r e e  p o i n t s  

(This property may a l s o  be 

e s t ab l i shed  us ing  arguments based on t h e  convexity of t h e  

polyhedron and t h e  p r o p e r t i e s  of t he  equat ions of t h e  planes.)  

- 3.4 Any continuous o r  piecewise continuous curve t h a t  has nega t ive  
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Y 

I X 

Fig.  4. Property 3.2: The assignment a t  <x,y> must 
be equal to or contained ’ 7  every assignment 
in the shaded region 

Y 

J X 

Fig. 5 Property 3.3:The line separating two regions cannot 
have negative slope. 
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. 

. 

s lope  everywhere along its length  must pass  through 

success ive ly  nes ted  regions (Fig. 6) .  Clear ly ,  t h i s  curve 

cannot pas s  through more than n+l regions.  

- 3.5 I f  we represent  each region in t h e  load p l ane  by a node and 

draw a d i r e c t e d  edge between nodes r ep resen t ing  ad jacent  

reg ions  i n  t h e  d i r e c t i o n  of nes t ing ,  we  ob ta in  a p l ana r  

l a t t i c e ,  as shown i n  Fig. 7. Obviously, no pa th  i n  t h i s  

l a t t i c e  has  l eng th  g r e a t e r  than n+l. 

- 3.6 The X-axis can be touched only by t h e  $ reg ion  f o r  a l l  x>O. 

This is because t h e  equat ion f o r  t h e  $ reg ion  is z=Ny which 

is ze ro  f o r  a l l  y=O and a l l  o the r  regions have z>O f o r  y>O. 

S imi la r ly ,  t h e  Y-axis can be touched only by t h e  U region,  f o r  

a l l  y>O. 

- 3.7 The regions f o r  very l a r g e  va lues  of x and y are a l l  unbounded. 

These "fringe" regions inc lude  t h e  $ and U regions.  

We may a t  t h i s  po in t  be tempted t o  conclude t h a t  p r o p e r t i e s  3.1 

and 3.2 are s u f f i c i e n t  t o  prove t h a t  t h e  t o t a l  number of regions is no 

more than n While t h e  number of regions w i l l  be proved t o  be 

O(n ) i n  t h e  next s e c t i o n ,  t h i s  does not  necessa r i ly  fol low from 

t h e  p r o p e r t i e s  l i s t e d  above. 

having 2n regions t h a t  have a l l  t h e  above p rope r t i e s .  

2 

2 

It is p o s s i b l e  t o  cons t ruc t  "load planes" 

W e  conclude t h i s  s e c t i o n  by observing t h a t ,  because t h e r e  is a 
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Fig .  6 Property 3 . 4 :  Any curve t h a t  has negative 
slope t h r o u g h o u t  i t s  l e n g t h  c a n n o t  pass t h r o u g h  
more t h a n  n + l  regions. 

F i g .  7 Property 3.5:The nesting re la t ionships  between 
regions form a planar l a t t i c e .  



one-to-one correspondence between regions on the load plane and the 

faces on the polyhedron, the properties l i s t e d  above apply i n  an 

obvious fashion t o  the polyhedron i t s e l f .  
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- I V .  The M a x i m u m  Number of D i s t i n c t  Assignments. 

I n  t h i s  s e c t i o n  w e  show t h a t  t h e  maximum number of regions on t h e  

load plane (and hence t h e  number of f aces  on t h e  polyhedron) i s  

O(n ). We introduce t h e  concept of elemental  polyhedra, t hese  

being polyhedra whose i n t e r s e c t i o n  i s  t h e  assignment polyhedron and 

2 

whose p r o p e r t i e s  permit u s  t o  o b t a i n  t h e  bound on t h e  number of regions 

on t h e  load plane. 

L e t  u s  consider  an assignment graph of t h e  type shown i n  Fig. 1, 

and concen t r a t e  our a t t e n t i o n  on two c u t s  A and B such t h a t  A $ B  and 

B $ A .  

B', where X'(Y') r ep resen t s  t h e  processor  node X(Y) p l u s  a l l  nodes 

assigned t o  X(Y) by both A and B (Fig. 8 ) .  Supernode A' r ep resen t s  a l l  

nodes assigned t o  X by A and t o  Y by B .  Simi la r ly ,  B' r ep resen t s  a l l  

nodes assigned t o  X by B and t o  Y by A. 

supernodes have weights equal  t o  t h e  sum of t h e  weights on t h e  edges 

between t h e  cons t i t uen t  nodes. 

We can condense our  graph i n t o  fou r  "Supernodes" X', Y', A' and 

The edges between t h e  

There are f o u r  poss ib l e  c u t s  i n  t h i s  graph: t h e  c u t s  A and B 

descr ibed above; 

A n B  t o  X ;  and t h e  c u t  U which r ep resen t s  t h e  assignment of nodes A u B  

t o  x. 

t h e  c u t  8 which r ep resen t s  t h e  assignment of nodes 

The polyhedron generated by these  f o u r  c u t s  is c a l l e d  a n  elemental  

polyhedron. 

i n  a n  assignment graph w i l l  g ive rise t o  an elemental  polyhedron. 

It should be clear t h a t  each p a i r  of c u t s  A , B  ( A $ B , B $ A )  

The 
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B A 

Fig .  8 A condensed Graph 

Y 
I 

I B  

X 
I ”/ 
1 I X 

F i g .  9 The elemental load plane 
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assignment polyhedron corresponding t o  a p a r t i c u l a r  graph is made up of 

t h e  i n t e r s e c t i o n  of a l l  t h e  elemental  polyhedra generated by a l l  p a i r s  

of cuts .  

c a l l e d  an elemental  load plane (Fig. 9). 

The load plane corresponding t o  a n  elemental  polyhedron is 

Note. The elemental  load plane shown i n  Fig. 9 has  t h e  maximum 

number of regions on i t  ( t h a t  is, four) .  This is  not always t h e  case 

and some elemental  load planes may have e i t h e r  A or B or both missing. 

I n  t h e  condensed graph, t h e  equation of t h e  assignment U ( 0 )  does not 

have t h e  form z=Mx (z=Ny). This is because each edge i s  a condensation 

of several edges from t h e  o r i g i n a l  graph and thus i t s  weight is t h e  sum 

of s e v e r a l  communication and execution cos t s .  uor t h i s  reason t h e  

elemental  load plane does not obey property 3.6--the X and Y axes  may 

be touched by two regions each. 

The f a c e s  corresponding t o  A and B can have a t  most one po in t  i n  

common ( t h a t  is, they can a t  most touch a t  a p o i n t ) .  They can never 

sha re  a common edge because A$B and B 4 A  by d e f i n i t i o n .  

t h a t  t h e  region U= A U B  w i l l  always be t o  t h e  l e f t  of and above t h e  

regions A and B .  

r i g h t  of and below A and B .  

Thus w e  see 

S imi l a r ly  t h e  region 8 = A n B  w i l l  always be t o  t h e  

This may formally be s t a t e d  as follows. 

- 4 . 1  I n  t h e  elemental  load plane every po in t  i n  t h e  region A U B  may 

be connected by a s t r a i g h t  l i n e  t o  some po in t  i n  region A ( B )  

such t h a t  t h e  s t r a i g h t  l i n e  does not pass  through region B ( A ) .  

The same a p p l i e s  t o  region A n B .  
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This  excess ive ly  formal way of s t a t i n g  a n  obvious f a c t  is, 

unfor tuna te ly ,  e s s e n t i a l  t o  t h e  proof t h a t  follows. 

polyhedron is made up of t h e  i n t e r s e c t i o n  of e lemental  polyhedra,  it 

fol lows t h a t  t he  abovementioned proper ty  of t he  elemental  load p lane  

must ca r ry  over  t o  t h e  load p lane  corresponding t o  t h e  complete 

assignment polyhedron. This  permits  u s  t o  prove t h e  fol lowing theorem: 

As t h e  assignment 

Theorem 4.2. The number of regions ( f aces )  on t h e  load p lane  

2 (assignment polyhedron) i s  O(n 1. 

Proof. The maximum number of regions of c a r d i n a l i t y  1 is n. For 

t h e  case n=6 t h i s  is s h m  i n  Fig. 10, where t h e  number of 

f aces  of c a r d i n a l i t y  2 is  n-135. Any f u r t h e r  regions of 

c a r d i n a l i t y  2 must l i e  i n  t h e  shaded regions so as not t o  

v i o l a t e  proper ty  3.2, but  t h i s  would cause proper ty  4.1 t o  be 

v io l a t ed .  It fol lows t h a t  t he re  cannot be g r e a t e r  than 0-1 

regions of c a r d i n a l i t y  2. S imi la r ly  t h e  number of regions of 

c a r d i n a l i t y  3 cannot exceed n-3, and so on. Thus the  t o t a l  

number of regions is n(n+1)/2 + 1. This proves t h e  theorem. 

Corol lary 4.3. The number of s t r a i g h t  l i n e  segments (edges) on t h e  

2 load p lane  (assignment polyhedron) i s  O(n ). 

Proof. Follows from Theorem 4.2 and a r e s u l t  by Euler[17521: 

polyhedron i n  3-space t h e  number of edges p l u s  six cannot 

exceed t h r e e  times t h e  number of faces .  

On a 
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F i g .  10 The maximum number o f  regions 



There are several other properties of the assignment polyhedron 

that can be established and shown t o  reduce the t o t a l  number of regions 

further. However these properties do not reduce the polynomial bound 

on the number of regions below n2 and are therefore ignored here. 
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- V. Cri t ica l  Load Lines. 

Given t h e  load p l ane  descr ibed above, we obviously need some means 

f o r  u t i l i z i n g  i t  i n  our  assignment problem. I n  t h i s  s e c t i o n  w e  p re sen t  

a n  e f f i c i e n t  technique f o r  f ind ing  t h e  assignment of a l l  modules of t h e  

program, given t h e  load point .  

L e t  u s  examine t h e  load plane shown in Fig. 11, concentrat ing our  

We observe t h a t  t h e  load p l ane  may be divided a t t e n t i o n  om module 3 .  

i n t o  two super  regions such t h a t  i f  t h e  load p o i n t  is i n  one region, 

module 3 is assigned t o  processor  X and i f  i n  t h e  o the r ,  i t  is assigned 

t o  processor  Y. I n  Fig. 11, t h e  super  region comprising regions { 3 } ,  

{ 2 , 3 ) ,  { 3 , 4 ) ,  { 2 , 3 , 4 ) ,  { 3 , 4 , 5 ) ,  etc. is t h e  one f o r  which module 3 is  

assigned t o  processor  X. Clearly,  one such d i v i s i o n  of t h e  load p l ane  

e x i s t s  f o r  each module. This l eads  t o  t h e  fol lowing concept. 

Def in i t i on .  The c r i t i ca l  load l i n e  f o r  a module is a piecewise 

continuous l i n e  on t h e  load plane such t h a t  i f  t h e  load p o i n t  f a l l s  t o  

t h e  r i g h t  of ( o r  below) t h i s  l i n e ,  t h e  optimal assignment w i l l  a s s i g n  

t h a t  module t o  processor  Y. I f  t h e  load p o i n t  f a l l s  t o  t h e  l e f t  of ( o r  

above) this l i n e ,  t h e  module is assigned t o  processor  X by the  optimal 

assignment 

The t h i c k  l i n e  shown i n  Fig. 11 i s  t h e  c r i t i c a l  load l i n e  f o r  

module 3 .  

The following p r o p e r t i e s  of t h e  c r i t i c a l  load l i n e  may be  
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Fig. 11 Crit ical  load line for module 3 .  
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enumerated 

- 5.1  A c r i t i ca l  load l i n e  starts a t  t h e  o r i g i n  and cont inues 

i n d e f i n i t e l y  . 

- 5.2  Each segment of a c r i t i ca l  load l i n e  is a s t r a i g h t  l i n e  with 

p o s i t i v e  s lope.  

property)  . 
(Negative s lopes  would v i o l a t e  t h e  n e s t i n g  

- 5.3 The y-coordinate of t h e  c r i t i c a l  load l i n e  inc reases  

monotonically w i t h  t h e  x-coordinate (follows from 5 . 2 ) .  

2 - 5.4 Every c r i t i c a l  load l i n e  has  O(n ) segments. This fol lows 

from c o r o l l a r y  4.3: 

l i n e  is  s u r e l y  less than t h e  t o t a l  number of segments on t h e  

e n t i r e  load plane. 

t h e  number of segments i n  a c r i t i c a l  load 

- 5 . 5  A t  least two c r i t i c a l  load l i n e s  p a s s  through t h e  p o i n t  of 

i n t e r s e c t i o n  of 3 regions on t h e  load plane (Fig. 1 2 ) .  

po in t  of i n t e r s e c t i o n  i s ,  i n  f a c t ,  a v e r t e x  of t h e  assignment 

polyhedron . 

This 

- 5 . 6  The set of n c r i t i c a l  load l i n e s ,  one f o r  each module, 

completely s p e c i f i e s  t h e  load  plane.  I f  t h e  z coordinate  is 

included a t  each breakpoint of each c r i t i ca l  load l i n e ,  then 

t h e  set  of c r i t i ca l  load l i n e s  completely s p e c i f i e s  t h e  

assignment polyhedron. 
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. 
C r i t i c a l  load  
l i n e  f o r  module 3 

F i g  12. A t  l e a s t  two c r i t i c a l  load l i n e s  pass through 
a p o i n t  o f  i n t e r s e c t i o n  o f  th ree  regions. 
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The cr i t ica l  load l i n e  a s soc ia t ed  wi th  a p a r t i c u l a r  module may be 

used t D  f i n d  t h e  optimal assignment f o r  t h a t  module f o r  a given load 

point.  Suppose w e  are given a c r i t i c a l  load l i n e  (Fig. 13) s p e c i f i e d  

by t h e  end p o i n t s  of i t s  segments. Then w e  may determine whether a 

load po in t  <x1,y1> l ies above o r  below t h e  l i n e  as follows. 

1. Divide t h e  load p l ane  i n t o  v e r t i c a l  s t r i p s  as determined by t h e  

end p o i n t s  of t h e  segments of t h e  c r i t i c a l  load l i n e .  

2. Determine which s t r i p  t h e  x coordinate  of t h e  po in t  

<xl,yl> l ies in.  

load l i n e  inc reases  monotonically with x (property 5.3), we may 

use a binary search a t  t h i s  s tep.  

Since t h e  y coordinate  of a c r i t i ca l  

3. Determine whether t h e  y coordinate  l ies  above o r  below t h e  

segment wi th in  t h e  s t r i p  found i n  s t e p  2. 

2 The number of segments being O(n ), t h e  search i n  s t e p  2 can 

be done i n  O(1og n )  t i m e .  Step 3 takes  constant  t i m e .  The 

determination of t h e  optimal assignment f o r  a l l  n modules w i l l  t hus  

t ake  O(n l o g  n )  t i m e .  
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y1 

1 X 

/ 
I 

Fig. 13 Determining whether a point <xl,yl>lies above or below a 
given critical load line. 
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- V I .  An Algorithm f o r  f i n d i n g  t h e  Assignment Polyhedron. 

The algori thm descr ibed i n  t h i s  s e c t i o n  w i l l  accept  t h e  assignment 

graph and t h e  minimum and maximum values  of loads x and y and w i l l  f i n d  

4 a l l  c r i t i ca l  load l i n e s  i n  O(n ) appp l i ca t ions  of t h e  maxflow 

algorithm. 

W e  assume, f o r  purposes of exposi t ion,  t h a t  t h e  following d a t a  

s t r u c t u r e s ,  func t ions  and procedures are a v a i l a b l e  t o  us. 

Function MAXFLOW(x,y:real):nodeset; 

i n  t h e  given assignment graph, apply a maxflow algori thm t o  i t ,  o b t a i n  

t h e  mincut and r e t u r n  t h e  set of nodes assigned by t h i s  mincut t o  

processor X. Recall t h a t  t h i s  set of nodes uniquely s p e c i f i e s  an 

assignment and t h a t  t h e  equation of t h e  p l ane  corresponding t o  t h i s  

c u t s e t  can be obtained from t h e  assignment graph. 

W i l l  s u b s t i t u t e  t h e  va lues  x and y 

Data S t r u c t u r e  PAIRLIST; w i l l  maintain a l i s t  of pairs  of adjacent  

f a c e s  on t h e  polyhedron t h a t  have been examined s o  f a r  by t h e  

algorithm. 

Procedure INSERT-PAIR (A,B:nodeset); w i l l  i n s e r t  t h e  p a i r  of 

assignments A,B  i n t o  PAIRLIST. 

Function IN-PAIRLIST(A,B:nodeset):boolean; 

already on PAIRLIST. 

r e t u r n s  t r u e  i f  A and B are 
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Function LOWEST-PLANE(A,B:nodeset):nodeset; This func t ion  vi11 fh-3 

t h e  l i n e  of i n t e r s e c t i o n  of planes A and B and e s t a b l i s h  t h e  h%@est 

po in t  on t h i s  l i n e  t h a t  is on t h e  h u l l .  

t h e  plane t h a t  i n t e r s e c t s  wi th  A and B a t  t h i s  po in t  ( t h a t  being rhe  

lowest p lane  i n t e r s e c t i n g  t h i s  l i n e ) .  It f i r s t  f i n d s  t h e  f u r t h e s t  

po in t  on t h e  l i n e  of i n t e r s e c t i o n  of A and B t h a t  is wi th in  t b c  region 

def ined  by xmX and ymX. 

poin t .  The po in t  of i n t e r s e c t i o n  of A,B and C is then considered t h e  

new f u r t h e s t  po in t  and t h e  process  repeated u n t i l  CIA o r  C-B, whereupon 

C is re turned  as t h e  lowest plane. Fig. 14 shows a view of t h i s  

process  i n  terms of its p ro jec t ion  on t h e  load plane.  

It w i l l  r e t u r n  the  identity of 

It then f i n d s  t h e  mincut C a t  t h i s  

Data S t r u c t u r e  CRITICAL-LINES. 

t h i s  s t r u c t u r e .  During t h e  progress  of t h e  a lgor i thm po in t s  t h a t  l i e  

on s p e c i f i c  c r i t i c a l  load l i n e s  w i l l  be i n s e r t e d  i n t o  t h e  s t r u c t u r e  

using t h e  fol lowing procedure. 

The n c r i t i ca l  l i n e s  w i l l  be s t o r e d  i n  

Procedure INSERT-CRITICAL(A,B,C:nodeset); 

are t h e  3 planes A,B,C which i n t e r s e c t  t o  form a v e r t e x  of t h e  h u l l .  

The procedure f i n d s  the  x,y and z coord ina tes  of t h e  poin t  of 

i n t e r s e c t i o n  and inserts t h i s  information i n t o  t h e  da t a  s t r u c t u r e  

The input  t o  t h i s  procedure 

CRITICAL-LINES- 

I n  a d d i t i o n ,  w e  have a s t a c k  t h a t  holds  nodesets  and t h e  usua l  

func t ions ,  push, pop and empty. 
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Ymax 

Ymin i 
max X 

'mi n 

Fig 14. Determining the lowest plane, C, that intersects with the 
line of intersection of A and B. 
algorithm applies the maxflow routine four times before 
locating the point of intersection of A ,  B and C. 

In this example the 
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The Algorithm 

begin 

while not empty do 

begin 

POP (A) ; 

pop (B) ; 

INSERT-PAIR(A,B); 

C:=LOWEST-PLANE(A,B); 

INSERT-CRIT(A,B,C); 

i f  not IN-PAIRLIST(A,C) then 

begin 

if not IN-PAIRLIST(B,C) then 

begin 

push (B) ; 

push (C 1 

end; 

end ; 

output critical lines ; 

end 
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The algori thm looks a t  each p a i r  of ad jacent  f aces  on t h e  

polyhedron once. 

such p a i r .  

equals  t h e  t o t a l  number of edges, which is O(n ). 

LOWEST-PLANE w i l l  r e s u l t  i n  a number of execut ions of t h e  maxflow 

algorithm. 

t h e  plane,  which is O(n 1. 

of t h e  maxflow algori thm is O(n ). 

3 maxflow algori thm being O(n ) [Karzanov 741, t h e  o v e r a l l  t i m e  

complexity of t h e  polyhedron f ind ing  algori thm is O(n ). 

It executes  t h e  func t ion  LOWEST-PLANE once f o r  every 

The number of ad jacent  pairs  of f aces  on t h e  polyhedron 

2 Each c a l l  t o  

This cannot be g r e a t e r  than t h e  t o t a l  number of regions on 

2 Thus the  t o t a l  number of app l i ca t ions  

4 The complexity of t he  b e s t  

7 



V I I .  Discussion and Conclusions. 

.. 
i 

We have presented a mathematical model f o r  t h e  problem of 

computing a l l  optimal assignments f o r  t h e  dua l  processor  assignment 

problem under varying load  condi t ions on both processors .  We have 

shown t h a t  t h e  s i t u a t i o n  can be modelled by a convex polyhedron i n  

3-space i n  which each f a c e  corresponds t o  a s p e c i f i c  opt imal  

assignment. 

d i s t i n c t  optimal assignments w a s  proved t o  be O(n 1. A f a s t  lookup 

technique f o r  f i n d i n g  t h e  optimal assignment i n  O(n l o g  n )  time was 

developed. 

polyhedron i n  O(n ) time. 

The t o t a l  number of f a c e s  and hence t h e  t o t a l  number of 

2 

The last s e c t i o n  presented a n  a lgo r i thm t o  f i n d  t h e  

7 

The v i a b i l i t y  of using network flow algorithms f o r  f i n d i n g  optimal 

assignments i n  a p r a c t i c a l  environment has been e s t a b l i s h e d  by t h e  

Brown Universi ty  Graphics System [Michel 61 van Dam 761, [van Dam e t  al. 

741. 

both been used t o  advantage i n  t h a t  system. 

t h i s  paper extends previous r e s u l t s  t o  t h e  case where varying loads on 

both machines can be taken i n t o  account and is t hus  app l i cab le  t o  more 

gene ra l  s i t u a t i o n s .  

Stone's b a s i c  assignment a lgori thm and t h e  n e s t i n g  property have 

The algori thm presented i n  

The algori thm f o r  f i n d i n g  t h e  polyhedron, which was described i n  

t h e  previous s e c t i o n ,  has been implemented and t e s t e d  on about 100 

random graphs with 10 t o  20 nodes each. 

and t h e  load  plane of Fig. 3 were both p l o t t e d  d i r e c t l y  by t h i s  

algorithm. 

The polyhedron shown i n  Fig. 2 
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Among t h e  open problems generated by t h i s  research are t h e  

following. 

1. H o w  may t h i s  approach be extended t o  t h r e e  processors? 

algori thm f o r  t h e  b a s i c  3-processor assignment problem has been 

developed by Stone [77bl. Can t h e  nes t ing  p r o p e r t i e s  descr ibed 

i n  t h i s  paper be extended i n  some way t o  t h e  t h r e e  processor  

case? 

An 

2. We have assumed t h a t  as t h e  load changes, r e l o c a t i o n s  may be 

c a r r i e d  ou t  without  penalty.  What i f  r e l o c a t i o n s  t a k e  a n  

apprec iab le  amount of time? Bokhari [ 7 9 ]  describes a n  

extension of t h e  network flow algori thm t h a t  t akes  reassignment 

c o s t s  i n t o  account. Can t h i s  be extended t o  t h e  v a r i a b l e  load 

case? 
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